

Cyber Enabled Radio Astronomy: Synthesis Imaging of the Universe David M. Halstead, CIO, NRAO

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc

The Electromagnetic Spectrum

10 ⁶	104	10 ²	1	10-2	10-4	10-6	10-8	10-10	10 ⁻¹² 10 ⁻¹⁴	wavelength (m)
ULF		Radio		Micro Wave	Infra red	Visible	Ultra violet	X-Ray	Gamma Ray	\sim
10 ²	10 ⁴	10 ⁶ 1	.0 ⁸ 10	010 1	012 10)14	10 ¹⁶	10 ¹⁸ 1	.0 ²⁰ 10 ²²	frequency (Hz)

Objects can look different at different wavelengths (colors vs. shades of grey)

We want to image at all wavelengths

..... with the same level of detail

How do we detect radio waves?

and Cyberinfrastructure

Radio Interferometry: Relies on pairs of antennae to emulate a much larger dish

Measure interference fringes

Interference

Young's Double-Slit Experiment

Distance between slits controls the wavelength of interference fringes

One dish == One slit

=> Each pair of antennas captures a different 2D fringe.

Image Formation

Build an image by combining all measured fringes.

2D Fourier transform :

Image = sum of cosine 'fringes'.

ALMA Correlator: HPC@ 16,200 feet

Correlator Quadrant

Tunable Filter Bank Card

- •Receives signals from 50x12m antennae
- •2551 printed circuit boards total in system
- •8192 Altera Stratix II FPGAs on TFB cards
- •32768 custom correlator chips with 4096 processors
- for multiply-and-add calculations
- •Cross-correlation rate 17 Peta ops/sec
- •Output specified at 6-60MBytes/sec

Correlator Card

Radio Galaxy Hercules A, powerful jets of sub-atomic particles blast 500,000 Light-years into space powered by a massive black hole

What's Next?

Next Generation Very Large Array

Band

#

1

2

3

4

5

6

Dewar

Α

В

В

В

В

В

GHz

1.2

3.5

12.3

20.5

30.5

70.0

- 1.2 116 GHz Frequency Coverage
- Short Baseline Array: 19 x 6m offset Greg. Antenna
 - Use 4 x 18m in TP mode to fill in (*u*, *v*) hole
- Main Array: 214 x 18m offset Gregorian Antennas
 - Fixed antenna locations across NM, TX, AZ, MX.
 - **Long Baseline Array**: 30 x 18m antennas located across continent for baselines up to 8860km

f_H: f_L

2.91

3.51

1.67

1.66

1.66

1.66

f_H

GHz

3.5

12.3

20.5

34.0

50.5

116

tм

GHz

2.35

7.90

16.4

27.3

40.5

93.0

BW

GHz

2.3

8.8

8.2

13.5

20.0

46.0

•

It's all about sensitivity and bandwidth

Main Array Configuration

Radius	Collecting Area Fraction				
0 km < R < 1.3 km	44%				
1.3 km < R < 36 km	35%				
36 km < R < 1000 km	21%				

Long Baseline Array (LBA)

- 30 x 18m Antennas at 10 sites
- Balance between Astrometry & Imaging Use Cases

Qty	Location	<u>Possible</u> Site			
3	Puerto Rico	Arecibo Site			
3	St. Croix, US VA	VLBA Site			
3	Kauai, HI	Kokee Park Geo. Obs.			
3	Hawaii, HI	New Site (off MK)			
2	Hancock, NH	VLBA Site			
3	Westford, MA	Haystack			
2	Brewster, WA	VLBA Site			
3	Penticton, BC, CA	DRAO			
4	North Liberty, IA	VLBA site			
4	Owens Valley, CA	OVRO			

Challenges/Opportunities

- Each dish generates up to 320 Gbps of uncompressible data
- We require time sync of ~70fs over ~10,000 km
- All signals must get back Exa-Scale correlator within $\frac{1}{2}$ a second
- The output of the correlator reaches 80Gbps (~600TBytes/day)
- PI access to PetaScale CI resources needing ~30k Cores
- On demand data reduction, imaging, and facilitated collaboration

Image Exoplanets!

Questions?

ngVLA.nrao.edu

Contact Info: dhalstead@nrao.edu

SPIE ngVLA technical overview: https://arxiv.org/pdf/1806.08405

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

